
An Analytical Data Management as a Cloud Service for
Numerical Simulations

Ramon G. Costa, Fábio Porto, Bruno Schulze

1{ramongc, fporto, schulze}@lncc.br
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Abstract. Numerical simulation of natural phenomena is being fostered by re-
cent advances in powerful high processing computing platforms. Scientists in
various areas, such as human cardiovascular system, model a phenomenon be-
ing studied through a set of mathematical equations. The latter are transformed
into a computing model, using one of the available numerical methods. As sci-
entists strive to obtain a more realistic simulation, a huge amount of data is
produced. Unfortunately, there has been little work on supporting numerical
simulation data management, which leaves simulation scientists with huge stan-
dard text files and complex analytical programs that eventually extract some
meaningful information to validate scientific hypotheses. In this context, this
paper tries to bridge this gap by raising some issues involved in numerical sim-
ulation data analysis. A representation for numerical simulation data is pre-
sented that considers a multidimensional model, for dimensional variables, and
their corresponding physical quantities. An initial set of analytical operators are
identified and their semantics discussed. The SciDB system is used to implement
a first prototype supporting the human cardiovascular system simulation devel-
oped at the LNCC. Additionally, a cloud service to interface with the numeri-
cal simulation data manager is proposed and its integration with the Neblina
cloud middleware is explored. We expect that this work will provide a better un-
derstanding concerning the needs involved in analytical data management for
multidimensional numerical simulations.

1. Introduction
Many scientific areas are taking advantage of development in high processing computing
to model natural phenomena through in-silico simulation. The analysis and observation
of computer simulation results allow scientists to validate their scientific hypotheses [10]
enhancing their understating about the phenomenon.

The process involved in creating a scientific simulation is complex. It starts by ob-
serving phenomenon data and modeling the process through a set of mathematical differ-
ential equations that expresses the variation of selected physical quantities on time-space.
Next, the scientist may choose an appropriate numerical method that would solve the
equations and compute for each reference point the values for selected physical quantities.
In simulations of natural phenomena the more fine grained the time interval and smaller
the space partitions are, the more continuous, therein realistic, the simulation would be.
Using state-of-art cluster platforms computer scientists strive to obtain the most possible
realistic simulations, to study the human physiological system, in medical applications, or
to compute weather forecasts, just to name a few applications. From a data management
viewpoint, a huge amount of data is being produced by computer simulations and as more
accurate become the simulations the worst performance is going to be.



Solvers consume and produce huge text files whose data must be analyzed through
specialized programs. Validating scientific hypothesis becomes a huge challenge to which
dedicated applications must be built to answer each new specific question scientist may
raise. Furthermore, the lack of a guiding data model leave non database specialists with
few resources either than modeling data in ad-hoc fashion, making sharing of results
and their usage a challenge. Finally, as the processing capacity of clouds, clusters and
multi-core machines increases share-nothing parallelism programming models offer great
potential to reduce the elapsed-time of simulation results analysis. In cases in which
domain partition is possible, internal support for data partitioning and replication would
be essential.

In this paper we propose a novel strategy for scientific simulation data manage-
ment based on database approach. We focus on the support to the analysis of simulation
results, taking a sample of a simulation output and loading it onto a cloud data service
modeled to manage space-time multi-scale dependent data. The data is modeled using a
multi-dimensional array representation for space and time and new operations are identi-
fied to support simulation data analysis. As a first class of operations, we are interested
in those expressing causal relationships between simulation states, as proposed by Sowa
[13] and discussed in the context of data provenance by Meliou et al. in [1]. We illus-
trate our discussion with the simulation of the human cardiovascular system developed at
LNCC, INCT-MACC [11].

2. A simulation of the human cardiovascular system
The numerical simulation is the type of simulation that uses numerical methods to quan-
titatively represent the evolution of a physical system and from the simulation results to
draw appropriate conclusions, obtaining a better understanding of the system.

Figure 1. Models: (a) 0D; (b) 1D; (c) coupled; and (d) 3D

As an example, the 0D, 1D and 3D models used in the HeMoLab [6], can be seen
as different scales, with different representation schemas. In a 0D model, a single point
value is compute for pressure, flow and volume. Fig. 1a shows both heart chambers,
defined by a system of seven equations. The 1D model, Fig. 1b, represents the human
cardiovascular system using line segments. The data output of the 1D model is used as
input for the 3D model, producing a coupled model (Fig. 1c). Finally, in a 3D model
computation is based on a mesh structure, Fig. 1d.

3. Literature review

The investigation on data management techniques in supporting to scientific applications
is not new. Even so, recent advances on instrumentation and high processing computing
infrastructure has called for a revision of old techniques and the investigation of new ones.



In this section, we discuss some of this recent work involved in managing and processing
scientific data and, more specifically, data produced out of numerical simulation.

Recent studies have demonstrated the need for a more efficient storage, indexing
and processing strategies for scientific data [2] e [9]. Stonebraker [5] argues that the cur-
rent data management technology is clearly unable to solve the demands of scientists.
Scientific experiments and analysis are executed using scientific workflows, which focus
their design on the activities and their execution order, leaving data modeling to be done
on a design-by-design basis. In Ogasawara [2], scientific workflows are modeled as data
intensive applications. Parameter sweep experiments evaluate data represented as a set of
parameter configuration values. Moreover, typical workflow activities are identified ac-
cording to their data consumption and production rate and mapped to algebraic operators,
such as: Map, Reduce, Filter, and JoinQuery.

The storage of numerical simulation data has been investigated by [9]. In their
work, multidimensional scientific data are modeled using an array data model. Thus,
storing and processing large matrices become the main issue. The authors propose dif-
ferent types of array storage models according to array sparsity. The authors discuss the
use of the Compressed Row Store and the B-Tree structures adapted to support the array
data model and to save dead spaces. Moreover, the authors discuss strategies to efficiently
support some operations over multi-dimensional arrays. The support for matrix multipli-
cation may benefit from data allocation that may appear structured in rows and columns,
while the Fourier Fast Transform (FFT) operations are backed up by a matrix linearization
method based on bit-reversal order technique [9]. In our work, our focus is rather on an
adequate representation of simulated data in support to simulation results analysis.

An important initiative in support for scientific data management is SciDB [7], a
database management system for scientific applications. It has been designed as a col-
laboration among scientific researchers, mostly astronomers, and database scientists [5].
It offers a multidimensional model based on multiarray representation. Its functionality
includes: data versioning, uniform distribution of data across the nodes of a cluster, and
two query language interfaces: AFL and AQL languages [12].

Considering the analysis of simulation data, an interesting question is to determine
the past and future cone of information, as presented by Sowa [13]. Indeed, depending on
the mathematical model adopted, one may be interested in explaining the path of a given
particle traveling on a physical domain. This is also considered a kind of retrospective
provenance information [4] type of analysis. Similar to this is the study of causality
in databases [1], in which data that contributes to a given result is considered to cause,
with a certain responsibility, such result. In the context of numerical simulation, the
identification of points in the physical space and time that were used in computing other
points later in time are considered to be their cause. This may be used to identify the
reason for some anomalous behavior on the simulated phenomenon.

From an architectural viewpoint, scientific projects pose some important require-
ments. Firstly, scientific cooperations require data to be available to and from different
localities. In particular, scientific workflows should run at a locality close to its data.
In case of numerical simulation, the locality where data is produced may dictate the ex-
ecution allocation. As the accuracy of simulations increases, more processing will be
required. In this context, granting extensions of processing capacity is very important.



We are considering using a cloud infrastructure managed by Neblina Software [3] in sup-
port to these requirements. Neblina is a middleware developed at LNCC that offers users
an interface to cloud resources.

4. Challenges
4.1. Data representation
Simulation data can be interpreted as composed by two sets of variables: dimensional
and physical quantities. The former places a simulation state into a reference coordinate,
whereas the latter informs about the computed physical quantities on each reference point.
Typically, the dimensional variables include space and time.

The space dimension refers to a mesh, which represents the topology of the phys-
ical domain as a composition of simple geometric objects (eg. a tetrahedron). A mesh
is represented by a set of points, referring to the vertices of the geometric objects and a
set of edges linking the points and the faces of the model. Observe, yet, that simulations
may adopt different scales throughout the domain. Scale in a numeric simulation context
conceptually introduces multiple worlds. Given a scale, a world is defined with a specific
dimensional system and the set of multidimensional objects visible at that scale with their
own schema (i.e. set of physical quantities definitions).

Figure 2. Dataout.txt: output file generated by the numerical solver

Furthermore, given a physical quantity, its value in a reference coordinate may
change through scales. Finally, a given simulation may be composed of data in different
scales, according to the precision requirements in different parts of the physical domain.

In order to illustrate, Fig. 2 shows the first lines of the output file of a 3D numerical
simulation. Each line represents the data, computed by a numerical solver, in a mesh point
for a given time step. The simulation computes the physical conditions on an artery of the
human cardiovascular system. The computed physical quantities are: velocity vectors in
three dimensions, pressure, and displacement vectors in three dimensions, respectively.
4.2. Using SciDB for storing simulation data
Our first effort to represent numerical simulation data uses SciDB. The multidimensional
array structure is the basis of data representation in SciDB. A user specifies multidimen-
sional structures by providing the range values for each dimension and a list of attribute
values to compose a cell. In addition, a versioning mechanism keeps historical values for
each attribute. In this context, the following mapping strategy has been defined: i) for
each set of physical quantities corresponding to a phenomenon being simulated in a given
scale; ii) define the set of ∆ dimensions involved; iii) specify the list of physical quantities
Π to be computed; iv) create an array having the dimensions as ∆ and attributes as Π.

In order to illustrate, consider the artery representation as in Fig. 3a and Fig.
3b. The former is a 1D representation of an artery whereas the latter is a 3D model.
Assuming that each cross-section of an artery contains 7000 different points in a mesh of
the 3D model (Fig. 3b), and the existence of 36000 cross-sections.

Using the AQL (Array Query Language) [12], we would define the following
schema for the 3D model of the the artery in Fig. 3b.



Figure 3. The mesh representation for the models: (a) 1D; and (b) 3D

CREATE ARRAY Geometry3D <velocity: point3D, pression: double,
displacement: point3D> [ simulations=0:*,1,0, t=0:500,500,0,
x=1:7000,1000,0, y=1:7000,1000,0, z=1:36000,1000,0]

Figure 4. 3D graphical representation of a multidimensional array for the artery
model in Fig. 3b

The datatype point3D represents an User Data Type with three variables: values
for the vectors in three dimensions in a certain mesh point. The attributes declared be-
tween the symbols ’<’ and ’>’, represent the physical quantities, while the ones declared
between square brackets represent the dimensions of the data schema. For each dimen-
sion three values are specified. The first value defines the dimension range, the second
specifies the partitioning criteria and the third defines an overlapping range.

Through the AQL query language, we can use the following schema to represent
1D (i.e different scale) of the human cardiovascular system:

CREATE ARRAY Geometry1D <velocity: double, pression: double,
flow: double> [ simulations=0:*,1,0, t=0:500,500,0 ]

A 1D model represents each cross-section summarized in a single point, as in Fig.
3a. Thus, each point contains the values for the physical quantities on each time step.
Additionally, It’s refers to the different simulations over the same mesh. Observe that the
array data model adopted by SciDB enables the direct representation of multidimensional
objects produced in numerical simulations.

4.3. Analyzing numerical simulation data
In order to support the analysis of numerical simulation output, a set of algebraic operators
must be provided. We have compiled an initial list of analysis types that would guide the
development of analytical operators.

1. computing the past and future cones, according to [13]: given a reference point on
a simulation, list the set of points that were responsible [1] for its calculations;

2. comparing simulations results: given two arrays of simulation data, compute their
intrinsic distance, and similar wise taking into account observation data;

3. retrieving the set of values in a reference coordinate: given a space-time coordi-
nate, return the set of points and the values of selected physical quantities;



4. drill down through scales: given a reference coordinate in scale si, return the
corresponding set of points in scale sj;

AQL and AFL languages, do not have sufficient mechanisms to support all the an-
alytical queries proposed above. The challenge is to create new operations and functions
to bridge this gap, as well as, to coupling them to algebraic operators. The current version
of AFL, nevertheless, gives support for a handful of analysis over simulation data:

1. obtain the values for pression where the highest values are achieved:
aggregate(Geometry3D, max(pression));

2. on which time steps did the pressure values were out of stable limits:
filter(Geometry3D, pression < INF or pression > SUP);

3. show the evolution in time of pressure average:
aggregate(Geometry3D, avg(pression), t);

4.4. Analytical data management service
From an architectural point of view, we expect to develop a service to interface with the
solvers - producing simulation data - and with scientists - submitting analytical queries
to the system. Fig. 5 shows the architecture of this service where the Simulation Data
Management Service (SDMS) is responsible for providing such an interface as a cloud
service. The SDMS should manage the storage and retrieval of the simulation data making
it transparent to scientific applications.

The availability of the SDMS as a cloud service fosters the collaborative use of
simulation data among scientists of a same research project and among different projects.
Additionally, the adoption of the cloud service approach should avoid unnecessary data
transfer as the analyses would be executed close to where data resides. Even when data
transfer could be needed, for instance, for a new simulation using a given previously
computed state as input - all the filtering of unnecessary data would happen close to the
data, minimizing the data actually transferred.

Figure 5. Simulation Data Management Service (SDMS) Architecture

It is important to observe that SDMS would only be used in cases requiring a more
detailed tracking of the simulation, as in the debug mode of various IDEs currently avail-
able in the market. So, the mechanisms for simulation data storage during the simulation
calculus should be activated under discretion, avoiding overloading the system.

Another important aspect of the cloud service approach is the possibility to ex-
plore elasticity [8]. Indeed, depending on the requested analysis, a huge amount of data
may be retrieved from the data storage device. In such a scenario, the system may allocate
extra memory for processing and freeing it as the computation ends. Such a policy is not
only a sign of altruism in a collaborative environment, but may reduce the costs involved
in supporting the computing platform. Finally, the SDMS should offer to scientific appli-
cations an API for accessing its services using traditional programing languages, such as
C++, Java an Scripting languages such as Python.



4.5. Scientific computing in cloud
Managing the huge amount of data produced by numerical simulation is a challenge for
high performance computing platforms, which are the standard for high demanding sci-
entific applications. Regarding the SDMS, an important issue is the research and devel-
opment of mechanisms that would enable its deployment in a private cloud as a Service
(SaaS) [8]. Additionally, the use of computational clouds becomes relevant due to many
other features, such as: scalability; service orientated; flexibility; location transparency;
and availability to a large number of users as an appliance. In this context, we should high-
light the software Neblina, presented in [3]. Neblina is a middleware developed at LNCC
that offers users an interface to cloud resources. Through Neblina a cloud infrastructure,
including an application, may be accessed and managed. Typical functionalities include:
resources capacity provision, user management, virtualized and physical resources man-
agement interface, remote access to the resources and their monitoring.

Figure 6. Numerical simulation environment

The SDMS has been integrated into Neblina. This integration makes the cloud
environment transparent to SDMS, enabling for instance the activation of its services. In
Fig. 6 the architecture of the integrated environment is shown: 1) First of all, the sim-
ulation software interfaces with Neblina in order to create a virtualized environment; 2)
Neblina sets up the environment, creating a virtual cluster to support the simulations data;
3) Neblina sends resource informations to the SDMS to allow the storage of data gener-
ated by numerical solvers; 4) the simulation software interfaces with numerical solvers
to compute the simulation; 5) numerical solvers requests the SDMS to store the com-
puted results; 6) the SDMS interfaces with SciDB to store the data; 7) once the data has
been stored, the simulation software can use the SDMS to answer to analytical queries
or retrieve simulation data. 8) finally, the SDMS communicates with SciDB to obtain the
requested informations.

5. Conclusion
Numerical simulation is an active area of research wherein scientists model natural phe-
nomenon through computer simulation. The area has benefited from increasingly pow-
erful high performance computing infrastructure to reduce the still long time needed to
compute simulations, as much as to enhance the quality of the simulation results. As sim-
ulations become more precise, by modeling the phenomenon in higher scale or consider-
ing a more fine grained mesh representation of the physical domain, more complex and
voluminous becomes the output simulation data. In order to validate scientific hypothesis,
the scientist finds himself building complex programs that analyze the simulation output,
looking for explanations that may shade some light on the studied phenomenon.

In this paper we investigate the requirements involved in designing a data manage-
ment service in support for numerical simulation analysis. A multidimensional modeling
approach represents the dimensions used in referencing each individual simulation point,



and maps each point to its respective physical quantity values. We have identified a set
of analytical operations that would leverage numerical simulation results analysis to an
analytical level. We discuss the data representation implementation using SciDB. We
observe that although the multi-array model adopted by SciDB enables the implementa-
tion of the proposed multidimensional representation, further extensions are required to
fully support numerical data representation and analysis requirements. In particular, some
analysis may require physical quantities to be computed over different abstractions, such
as computing their values in a face or edge of a geometry object in a mesh. Moreover,
supporting modeling through different scales would require a relationship between mul-
tiple representations of the same multidimensional space-time. Some proposed analytical
queries can not, as well, be represented using none of the SciDB query languages. New
functions and user data types would be needed to cope with those. An initial architec-
ture for a numerical simulation data manager cloud service is provided and its integration
with the Neblina cloud middleware is discussed. We expect that this work will provide
a better understanding concerning the needs involved in analytical data management for
multidimensional numerical simulations.
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